نقشه جای‌نواختی فضای واکه‌ای در قشر شنوایی مغز

نوع مقاله : مقاله تحقیق

نویسندگان
1 دانشجوی دکترای زبانشناسی همگانی، دانشگاه تهران، تهران، ایران
2 استاد گروه زبانشناسی همگانی، دانشگاه تهران، تهران، ایران
چکیده
ویژه‌سپاری مراحل مختلف فرآیند پردازش داده‌های صوتی و به خصوص ادراک واجی یکی از موضوعات پژوهشی بحث برانگیز در حوزه مطالعات زبانشناسی عصبی بوده است. در این میان دو ناحیه از قشر شنوایی یعنی قشر شنوایی اولیه و شکنج گیجگاهی فوقانی به عنوان محل پردازش‌های حسی و پردازش‌های مقدماتی شناختی اهمیت ویژه‌ای دارند. هدف پژوهش حاضر کشف همبسته‌های مکانی پردازش واکه‌های موجود در نظام واکه‌ای زبان فارسی و بهره‌برداری از آنها جهت پرده برداشتن از محتوای فرآیند پردازشی صوتی در هر یک از این دو ناحیه از قشر شنوایی مغز است. در این مطالعه از 18 نفر از گویشوران زبان فارسی خواسته شد تا به توالی­هایی از واکه­های ساده زبان فارسی با ترتیب تصادفی گوش کنند و همزمان پاسخ دستگاه عصبی آنان به شنیدن این واکه­ها با استفاده از روش الکتروانسفالوگرافی ثبت شد. سپس پتانسیل­های وابسته به رخداد متناظر با پردازش هر واکه در قشر شنوایی اولیه مغز آنان با استفاده از روش دوقطبی‌های جریان معادل منشایابی و رابطه مختصات منشا هر یک از واکه‌های مذکور در دستگاهی سه بعدی از یک سو با مشخصات طیفی صوت‌شناختی و از سوی دیگر با ارزش‌های دو مشخصه انتزاعی واجی «محل تولید» و «ارتفاع زبان» سنجیده شد. بررسی و تحلیل نتایج به دست آمده از این آزمایش نشان می‌دهد برخلاف تحلیل‌های سابق، قشر شنوایی اولیه مغز به پردازش حسی اختصاص ندارد و بخشی از فرآیند پردازش شناختی مبتنی بر مشخصه‌های انتزاعی تولیدی در همین ناحیه و قبل از انتقال بار پردازشی به شکنج گیجگاهی فوقانی آغاز می‌شود.

کلیدواژه‌ها

موضوعات


بی‌جن‌خان، م. (1384). واج شناسی: نظریه بهینگی، تهران، سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها (سمت)، مرکز تحقیق و توسعه علوم انسانی.
نصری, ع, کریمی دوستان, غ. (1399). شواهد الکتروانسفالوگرافیک بازنمایی عصب شناختی مشخصه های آوایی و واجی واکه های زبان فارسی در قشر شنوایی مغز. پژوهشهای زبانی. 11(2)، 223-245.
Ahlfors, S. P., J. Han, J.W. Belliveau and M. S. Hamalainen (2010). Sensitivity of MEG and EEG to source orientation. Brain Topography, 23:227-232.
Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. Nature Neuroscience, 20:327-339.
Bernal, B. and A. Ardila (2016). From hearing sounds to recognizing phonemes: Primary auditory cortex is a truly perceptual language area. AIMS Neuroscience, 3(4), 454-473.
Boker, K.B.E, H.M. Cornelis and B. Bolker (2015). Walker S fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1):1-48.
Bijankhan, M. (2005). Phonology: Optimality Theory: SAMT. [in Persian].
Boersma, P., and D. Weenink (2011). Praat: doing phonetics by computer (Computer program), Version 5.2.
Brody, R.M., B.D. Nicholas, M.J. Wolf, P.B. Marcinkevich and G.J. Artz. (2013). Cortical deafness: A case report and review of the literature. Otology and Neurotology, 34:1226-1229.
Campbell, T., I. Winkler and T. Kujala (2007). N1 and the mismatch negativity are spatiotemporally distinct ERP components: disruption of immediate memory by auditory distraction can be related to N1. Psychophysiology, 44:530-540.
DeWitt, I. and J. P. Rauschecker (2012). Phoneme and word recognition in the auditory ventral stream. Proceedings of the National Academy of Sciences United States of America, 109:505-514.
Embick, D. and D. Poeppel (2015). Towards a computational(ist) neurobiology of language: Correlational, integrated, and explanatory neurolinguistics. Language and Cognitive Neuroscience, 30:357-366.
Eulitz, C., J. Obleser, and A. Lahiri (2004). Intra-subject replication of brain magnetic activity during the processing of speech sounds. Cognitive brain research 19:82-91.
Gage, N., D. Poeppel, T. Roberts and G. Hickok (1998). Auditory evoked M100 reflects onset acoustics of speech sounds. Brain Research 814: 236-239.
Grimaldi, M. 2012. Toward a neural theory of language: Old issues and new perspectives. Journal of Neurolinguistics, 25:304-327.
Grimaldi, M., F. Sigona and F. di Russo (2016). Electroencephalographic evidence of vowels computation and representation in human auditory cortex, In A.M. di Sciullo (Ed.) Biolinguistic Investigations on the Language Faculty (79-100), Amsterdam: John Benjamins.
Hadjikhani, N., A.K. Liu, A.M. Dale, P. Cavanagh & R.B.H. Tootell (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience, 1:235-241.
Hickok, G., and D. Poeppel (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92:67-99.
Hickok, G., and D. Poeppel (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8:393-402.
Hoonhorst, L., C. Collin, E. Markessis, M. Radeau, P. Deltenre and W. Sernicales (2009). The N100 component: an electrophysiological cure of voicing perception, In S. Fuchs, H. Loevenbruck, D. Pape and P. Perrier (Eds.) Some aspects of speech in brain (5-34) Bern: Peter Lang Verlagsgruppe.
Kaas, J.H., and T.A. Hackett (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences U.S.A., 97: 11793-11799.
Manca, A. D., and M. Grimaldi (2016). Vowels and consonants in the brain: Evidence from magnetoencephalographic studies on the N1m in normal-hearing listeners. Frontiers in Psychology, 7:1413.
Manca A.D., F. DiRusso, F. Sigona and M. Grimaldi (2019). Electrophysiological evidence of phonemotopic representations of vowels in the primary and secondary auditory cortex. Cortex, 121:385-398.
McDonald, J.J., W.A. Teder-Sälejärvi, F. DiRusso & S.A. Hillyard (2003). Neural substrates of perceptual enhancement by cross-modal spatial attention. Journal of Cognitive Neuroscience, 15:10-19.
Mesgarani, N., C. Cheung, K. Johnson and E.F. Chang (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343:1006-1010.
syllable onset. Neuroimage, 20: 1839-1847.
Nasri, A. and Karimidoustan, Gh (2020). Electrophysiological Evidence of Neurological Representations of the Phonological and Phonetic Properties of Persian Vowels in the Auditory Cortex. Language Research, 11(2), 223-245. [In Persian]
Näätänen, R. and T. Picton (1987). The N1 wave of the human electric and magnetic response to sound: A review and analysis of the component structure. Journal of Psychophysiology, 24: 375-425.
Obleser, J., T. Elbert, A. Lahiri and C. Eulitz (2003a). Cortical representation of vowels reflects acoustic dissimilarity determined by formant frequencies. Cognitive Brain Research, 15: 207-213.
Obleser, J., A. Lahiri and C. Eulitz (2003b). Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds post syllable onset. Neuroimage, 20: 1839-1847.
Obleser, J., A. Lahiri and C. Eulitz (2004). Intra-subject replication of brain activity during the processing of speech sounds. Cognitive Brain Research, 19:82-91.
Obleser, J. and F. Eisner (2009). Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 13:14-19.
Ohl, F.W. and H. Scheich (1997). Orderly cortical representation of vowels based on formant interaction. Proceedings of the National Academy of Sciences U.S.A. 94: 9440-9444.
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9:97–113.
Pantev, C., O. Bertrand, C. Eulitz, C. Verkindt, S. Hampson, G. Schuierer and T. Elbert (1995). Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalography and clinical neurophysiology, 94:26-40.
Poeppel, D., C. Phillips, E. Yellin, H.A. Rowley, T.P.L. Roberts and A. Marantz (1997). Processing of vowels in supratemporal auditory cortex. Neuroscience Letters, 221: 145-148.
Pons, T.P., P.E. Garraghty, D.P. Friedman, M. Mishkin (1987). Physiological evidence for serial processing in somatosensory cortex. Science 237:417-420.
Riedinger, M., A. Nagels. A. Werth & M. Scharinger (2021). Asymmetries in assessing vowel representation are driven by phonological and acoustic properties: Neural and behavioral evidence from natural German minimal pairs. Frontiers in Human Neuroscience. 15:1-20.
Rauschecker, J.P. and S.K. Scott (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12:718-724.
Romani, G.L., S.J. Williamson and L. Kaufman (1982). Tonotopic organization of the human auditory cortex. Science, 216:1339-1340.
Saenz, M. and D.R.M Langers (2014). Tonotopic mapping of human auditory cortex. Hearing Research, 307: 42-52.
Scharinger, M., W.J. Idsardi, and S. Poe (2011). A Comprehensive 3-dimensional Cortical Map of Vowel Space. Journal of Cognitive Neuroscience, 23:3972-3982.
Scott, S.K., and I.S. Johnsrude (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26: 100-107.
Scott, S.K and C. McGettigan (2013). Do temporal processes underlie left hemisphere dominance in speech perception? Brain and Language, 127:36-45.
Shestakova, A., E. Brattico, A. Soloviev, V. Klucharev and M. Huotilainen (2004). Orderly cortical representation of vowel categories presented by multiple exemplars. Cognitive Brain Research, 21:342-350.
Stevens, K.N. (1998) Acoustics phonetics (Vol.30). Cambridge, MA: The MIT Press.
Stevens, K.N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features. Journal of Acoustical Society of America, 111:1872-1891.
Talavage, T.M., M.I. Sereno, J.R. Melcher, P.J. Ledden, B.R. Rosen, and A.M. Dale (2004). Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Journal of neurophysiology, 91:1282-1296.
Tanriverdi, T., H. Al-Jehani, N. Poulin & A. Olivier (2009). Functional results of electrical cortical stimulation of the lower sensory strip. Journal of Clinical Neuroscience 16:1188–1194.
Teder-Sälejärvi, W.A., F. DiRusso, J.J. McDonald & S.A. Hillyard (2005). Effects of spatial congruity on audio-visual multimodal integration. Journal of Cognitive Neuroscience. 17:1396-1409.
Teder-Sälejärvi, W.A., J.J. McDonald, F. DiRusso & S.A. Hillyard (2002). An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cognitive Brain Research. 14:106-114.
Wandell, B.A., A.A. Brewer & R.F. Dougherty (2005). Visual field map clusters in human cortex. Philosophical Transactions 360:693-707.
Weinberger, N.M. (2015). New perspective in the auditory cortex: Learning and memory. In G. Hickok and G.C. Celesia (Eds.), Handbook of Clinical Neurology. Vol. 129, pp. 117-147. Amsterdam: Elsevier.
Weise, A. E. Schrönger and J. Horváth (2018). The detection of higher-order acoustic transitions is reflected in the N1 ERP. Psychophysiology, 55(7), e13063.
Woods, D.L. (1995). The component structure of N1 wave of the human auditory evoked potential. Electroencephalography and Clinical Neurophysiology 44:102-109.