Abdel, R. A. (2021). The multimodal recycling machine: toward a cognitive-pragmatic theory of the text/image production. Journal of Graphic Novels and Comics, 12(3), 207-239. https://doi.org/10.1080/21504857.2019.1651358
Bartlett, P. L., Montanari, A., & Rakhlin, A. (2021). Deep learning: a statistical viewpoint. Acta numerica, 30, 87-201. https://doi.org/10.1017/S0962492921000027
Bashar, A. (2019). Survey on evolving deep learning neural network architectures. Journal of Artificial Intelligence, 1(02), 73-82. https://doi.org/10.36548/jaicn.2019.2.003
Chen, Q., & Jiang, G. (2018). Why are you amused: Unveiling multimodal humor from the prototype theoretical perspective. The European Journal of Humour Research, 6(1): 62-84. https://doi.org/10.7592/EJHR2018.6.1.chen
Dargan, S., Kumar, M., Ayyagari, M. R., & Kumar, G. (2020). A survey of deep learning and its applications: a new paradigm to machine learning. Archives of Computational Methods in Engineering, 27, 1071-1092. https://doi.org/10.1007/s11831-019-09344-w
Delecraz, S., Becerra-Bonache, L., Favre, B., Nasr, A., & Bechet, F. (2021). Multimodal machine learning for natural language processing: disambiguating prepositional phrase attachments with images. Neural Processing Letters, 53(5), 3095-3121. https://doi.org/10.1007/s11063-020-10314-8
Derakhshan, A., Wang, Y. L., Wang, Y. X., & Ortega-Martín, J. L. (2023). Towards Innovative Research Approaches to Investigating the Role of Emotional Variables in Promoting Language Teachers’ and Learners’ Mental Health. International Journal of Mental Health Promotion, 25 (7): 1-10. doi:10.32604/ijmhp.2023.029877.
Diao, L., & Hu, P. (2021). Deep learning and multimodal target recognition of complex and ambiguous words in automated English learning system. Journal of Intelligent & Fuzzy Systems, 40(4), 7147-7158. https://doi.org/10.3233/JIFS-189543
Dong, S. (2020). Intelligent English teaching prediction system based on SVM and heterogeneous multimodal target recognition. Journal of Intelligent & Fuzzy Systems, 38(6), 7145-7154. https://doi.org/10.3233/JIFS-179792
Fu, J., & Wang, Y. (2022). Inspecting EFL Teachers’ Academic Literacy Development in Multilingual Contexts: A Global Vision. Heliyon, e12143(8):1-6. doi: http://doi.org/10.1016/j.heliyon.2022.e12143.
Gao, Y., Zeng, G. Wang, Y., Klan, A. & Wang, X. (2022). Exploring educational planning, teacher beliefs, and teacher practices during the pandemic: A study of science and technology-based universities in China. Frontiers in Psychology, 13, 903244. https://doi.org/10.3389/fpsyg.2022.903244.
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2
Lestari, A. S. (2022). Digital Based Learning Management With A Multimodal Approarch. Al-Tanzim: Jurnal Manajemen Pendidikan Islam, 6(2), 465-476. https://doi.org/10.33650/al-tanzim.v6i2.3235
Li, M., Liu, M., Jiang, Z., Zhao, Z., Zhang, J., Ge, M., ... & Wang, Y. (2022). Multimodal Emotion Recognition and State Analysis of Classroom Video and Audio Based on Deep Neural Network. Journal of Interconnection Networks, 22(Supp04), 2146011. https://doi.org/10.1142/S0219265921460117
Macagno, F., & Pinto, R. B. W. S. (2020). Reconstructing Multimodal Arguments in Advertisements: Combining Pragmatics and Argumentation Theory. In Argumentation Through Languages and Cultures (pp. 141-176). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-19321-7_7
Marufuzzaman, M., & Ekşioğlu, S. D. (2017). Designing a reliable and dynamic multimodal transportation network for biofuel supply chains. Transportation Science, 51(2): 494-517. https://doi.org/10.1287/trsc.2015.0632
Mater, A. C., & Coote, M. L. (2019). Deep learning in chemistry. Journal of chemical information and modeling, 59(6), 2545-2559. https://doi.org/10.1021/acs.jcim.9b00266
Nemati, S., Rohani, R., Basiri, M. E., Abdar, M., Yen, N. Y., & Makarenkov, V. (2019). A hybrid latent space data fusion method for multimodal emotion recognition. IEEE Access, 7, 172948-172964. https://doi.org/10.1109/ACCESS.2019.2955637
Pan, X., & Zhang, Z. (2020). An empirical study of application of multimodal approach to teaching reading in EFL in senior high school. International Journal of Emerging Technologies in Learning (iJET), 15(2), 98-111. https:/doi.org/10.3991/ijet.v15i02.11267
Ramtohul, P., Engelbert, M., Malclès, A., Gigon, E., Miserocchi, E., Modorati, G., ... & Freund, K. B. (2021). Bacillary layer detachment: multimodal imaging and histologic evidence of a novel optical coherence tomography terminology: literature review and proposed theory. Retina, 41(11), 2193-2207. https://doi.org/10.1097/IAE.0000000000003217
Stöckl, H. (2019). Linguistic multimodality–multimodal linguistics: a state-of-the-art sketch. Multimodality: disciplinary thoughts and the challenge of diversity. de Gruyter, Berlin/Boston, 41-68. https://doi.org/10.1080/21504857.2019.1651358
Wang, J., Cheng, R., & Liao, P. C. (2021). Trends of multimodal neural engineering study: a bibliometric review. Archives of Computational Methods in Engineering, 28(7): 4487-4501. https://doi.org/10.1007/s11831-021-09557-y
Wang, Y. (2022). Research on the method of educational text classification based on deep learning. International Journal of Continuing Engineering Education and Life Long Learning, 32(3), 313-326. https://doi.org/10.1504/IJCEELL.2022.124032
Wang, Y. (2017). Construction elements and path of practical education model in universities. EURASIA Journal of Mathematics, Science and Technology, 13(10): 6775-6782. https://doi.org/10.12973/ejmste/78525.
Wang, Y., & Hemchua, S. (2022). Can we learn about culture by EFL textbook images?: A semiotic approach perspective. Language Related Research, 13(3), 479-499. https://doi.org/10.29252/LRR.13.3.18.
Wang, Y. (2023). Probing into the boredom of online instruction among Chinese English language teachers during the Covid-19 pandemic. Current Psychology, 43(1):1-15.https://doi.org/10.1007/s12144-022-04223-3.
Wang, Y., Pan, Z. W., & Wang, M. Z. (2023). The moderating effect of participation in online learning on EFL teachers’ teaching ability. Heliyon, 9(3)e13890: 1-12. doi: https:// doi.org/10.1016/j.heliyon.2023.e13890.
Wang, Y., Derakhshan, A., Pan, Z., & Ghiasvand, F. (2023). Chinese EFL Teachers’ Writing Assessment Feedback Literacy: A Scale Development and Validation Study. Assessing Writing, 56: 1-16. doi: https://doi.org/10.1016/j.asw.2023.100726.