Amélioration de la communication orale des apprenants de langues étrangères en Iran: rôle de l’intelligence artificielle dans la création d’interactions vérisimilitudinaires et l’adaptation culturelle

Document Type : مقالات علمی پژوهشی

Authors
1 Doctorant en français, Tarbiat Modares Université, Téhéran, Iran
2 Professeur adjoint, Département de français, Tarbiat Modares Université, Téhéran, Iran
10.48311/LRR/lrr.2025.114690.0
Abstract
Cet article examine le rôle de l’intelligence artificielle (IA) dans l’amélioration de la compétence orale chez les apprenants de français langue étrangère (FLE) en Iran. Il s’interroge sur la manière dont l’IA peut contribuer, de manière efficace et contextualisée, au développement de cette compétence dans un environnement culturellement spécifique.
L’étude repose sur une enquête menée auprès de 20 apprenants de FLE en Iran. La collecte de données s’est effectuée à travers un questionnaire ciblant leurs compétences orales, leur expérience d’usage de l’IA et leur perception de l’adéquation culturelle des contenus générés. L’analyse des données mobilise une approche mixte (quantitative via SPSS et qualitative) et un cadre théorique pluridisciplinaire.
Ce cadre s’appuie sur la théorie de la compétence communicative de Dell Hymes, la théorie de l’adaptation culturelle de Kim et Hall, les approches discursives-pragmatiques de John Searle et surtout sur la théorie du carré tensif de Fontanille.
Les résultats indiquent que l’IA permet d’améliorer la prononciation et la fluidité, encourage l’usage des expressions idiomatiques françaises et développe la souplesse linguistique. Par la création d’environnements vérisimilitudinaires (contextes d’interaction réalistes et culturellement cohérents) et des retours personnalisés en temps réel, l’IA favorise un apprentissage actif et individualisé. Toutefois, certaines limites subsistent : la difficulté à reproduire les dimensions émotionnelles, gestuelles et implicites des interactions humaines, ainsi qu’à intégrer la diversité dialectale régionale.

Keywords

Subjects


Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action control: From cognition to behavior (pp. 11-39). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ahyarudin, A., & Jamilah, J. (2024). Enhancing students’ speaking skills: The impact of AI-based instructional tasks. Formosa Journal of Social Research, 3(1), 45–56. DOI: 10.55927/fjsr. v3i9.11506
Baharloo, A., & Miyan Baghi, A. (2024). The Impact of AI-Assisted Learning on EFL Speaking Skills: A Mixed-Methods Study in the Iranian Context. Technology Assisted Language Education2(4), 69-96.
Canale, M., & Swain, M. (1980). Theoretical bases of communicative approaches to second language teaching and testing. Applied Linguistics, 1(1), 1–47.
Cetindamar, D., Kitto, K., Wu, M., Zhang, Y., Abedin, B., & Knight, S. (2022). Explicating AI literacy of employees at digital workplaces. IEEE transactions on engineering management, 71, 810-823.
Clifford, J., Merschel, L., & Reisinger, D. (2013). Assessment of interactive translation tools in language learning. CALICO Journal, 30(1), 26–44.
Crystal, D. (2003). English as a global language (2nd ed.). Cambridge University Press.
Dai Y., Chai C.-S., Lin P.-Y., Jong M. S.-Y., Guo Y., Qin J. (2020). Promoting students’ well-being by developing their readiness for the artificial intelligence age. Sustainability. 12(16):6597. doi: 10.3390/su12166597.
Danesi, M. (2024). AI in foreign language learning and teaching: Theory and practice. Nova Science Publishers.
Fathi, J., Rahimi, M., & Teo, T. (2025). Applying intelligent personal assistants to develop fluency and comprehensibility, and reduce accentedness in EFL learners: an empirical study of Google Assistant. Language Teaching Research, 13621688251317786.
Ferdowsi, S., & Razmi, M. H. (2024). Anxiety-provoking factors in consecutive interpreting: A qualitative study of Iranian student interpreter trainees. Asian Journal of Second and Foreign Language Education, 9(38). DOI: 10.1186/s40862-024-00260-6
Fontanille, J., & Zilberberg, C. (1998). La sémiotique tensive. Presses Universitaires de France.
Godwin-Jones, R. (2018). Using mobile technology to develop language skills and cultural understanding. Language Learning & Technology22(3), 3-17.
Helm, F. (2015). The practices and challenges of telecollaboration in higher education in Europe. Language Learning & Technology, 19. (2), 197–217. https://doi.org/10125/44405
Horwitz, E. K., Horwitz, M. B., & Cope, J. (1986). Foreign language classroom anxiety. Modern Language Journal, 70(2), 125–132.
Hymes, D. (1972). On communicative competence. In J. B. Pride & J. Holmes (Eds.), Sociolinguistics (pp. 269–293). Harmondsworth: Penguin.
Izadi, M., & Zare, M. (2016). Reticence in EFL speech production: A study of learners’ anxiety and vocabulary knowledge. Working Papers in Language Pedagogy, 10. DOI: 10.61425/wplp.2016.10.73.86
Kasbi, S., & Elahi Shirvan, M. (2017). Ecological understanding of foreign language speaking anxiety: Emerging patterns and dynamic systems. Asian Journal of Second and Foreign Language Education, 2(2). DOI: 10.1186/s40862-017-0026-y
Kim, Y. Y. (2001). Becoming intercultural: An integrative theory of communication and cross-cultural adaptation. Sage Publications.
Kramsch, C. (1998). Language and culture. Oxford University Press.
Krashen, S. D. (1982). Principles and practice in second language acquisition. Pergamon.
Kukulska-Hulme, A. (2020). Will mobile learning change language learning? ReCALL, 32(2), 162–178. DOI: 10.1017/S0958344020000157
Ma, G. & Yang, X. (2025). Fostering Intercultural Competence Through AI‑Driven Tools: A Case Study of Linguistic and Cultural Adaptability in Chinese EFL Education. Digital Technologies Research and Applications. 4. 158-169. 10.54963/dtra.v4i1.1131.
Mananay, J. (2024). Integrating Artificial Intelligence (AI) in Language Teaching: Effectiveness, Challenges, and Strategies. International Journal of Learning, Teaching and Educational Research. 23. 361-382. 10.26803/ijlter.23.9.19.
Long, D., & Magerko, B. (2020). What is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16). Association for Computing Machinery. https://doi.org/10.1145/3313831.3376727
Łuszczyńska, S. (2016). Revue des recherches empiriques sur l’anxiété langagière et la réussite. Annales Neophilologiarum, 10, 21–41. DOI: 10.18276/an.2016.10-02
Moazzeni Limoudehi, M., & Mazandarani, O. (2021). Anxiety when learning a foreign language: The cases of proficiency and gender. Language Related Research (Comparative Language and Literature Research), 11(60), 605–634. https://sid.ir/paper/958547/en.
Muñoz-Basols, J., & Fuertes Gutiérrez, M. (2025). Opportunities for artificial intelligence (AI) in language teaching and learning. In Planning, Personalization, Implementation (PPI): Technology-Mediated Language Teaching. https://www.researchgate.net/publication/390466448.
Ng, D. T. K., Leung, J. K. L., Su, M. J., Yim, I. H. Y., Qiao, M. S., & Chu, S. K. W. (2022). AI literacy for all. In AI literacy in K-16 classrooms (pp. 21-29). Cham: Springer International Publishing.
O’Dowd, R. (2018). From telecollaboration to virtual exchange: State-of-the-art and the role of UNICollaboration in moving forward. Journal of Virtual Exchange, 1, 1–19. https://doi.org/10.14705/rpnet.2018.jve.1.
Perusset, A. (2022). Éléments de sémiotique catégorielle: Théorie, méthode, schémas et pratique. Actes sémiotiques, 126, 1–18. DOI: 10.25965/as.7443.
Peterson, M. (2013). Computerized games and simulations in CALL. Routledge.
Putigny, A. (2023). Foreign language anxiety in education. JELITA: Journal of English Language Teaching and Instructional Technology, 5(1), 123–143. DOI: 10.56185/jelita. v5i1.477.
Rastgari, H., Kamali, M., Nasrollahi, A., & Schulz, P. (2022). Assessing Health Literacy and Communication Skills in Medical Referrals: A Survey Study. Journal of Health Literacy, 7(3), 37-52. 10.22038/jhl.2022.64098.1275
Ruggia, S. (2019). Les corpus numériques pour la didactique des langues: de la formation des enseignants à l’élaboration de dispositifs d’apprentissage. Corpus. (18). https://doi.org/10.4000/corpus.8211
Sadighi, F., & Dastpak, M. (2017). The sources of foreign language speaking anxiety of Iranian English language learners. International Journal of Education and Literacy Studies (IJELS), 5(4), 111–115. DOI: 10.7575/aiac.ijels. v.5n.4p.111
Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge University Press.
Siahpoosh, H., & Pazhouhesh, S. R. (2025). On the effectiveness of Etymological Elaboration mitigated with AI-based instruction on idiom learning of EFL students. Assessment and Practice in Educational Sciences3(3), 1-11.
UNESCO. (2022). Global Education Monitoring Report 2022: Technology in education — A catalyst for transformation. https://www.unesco.org/gem-report/en/2022-technology
Wang, S., & Vásquez, C. (2012). Web 2.0 and second language learning: What does the research tell us? CALICO Journal, 29(3), 412–430. DOI: 10.11139/cj.29.3.412-430
Warschauer, M., & Healey, D. (1998). Computers and language learning: An overview. Language Teaching, 31(2), 57–71. DOI: 10.1017/S.
Xodabande, I., Shiri, S., & Zohrabi, M. (2025). Exploring the impacts of an AI-driven instructional intervention on Iranian EFL learners’ pronunciation skill development. Discover Education4(1), 307.
Xu, H., & Wang, Y. (2021). AI-enhanced language learning environments: A study of oral practice and anxiety reduction. Journal of Educational Computing Research, 59(6), 1092–1113.
Yousefi Azarfam, A. A. & Baki, R. (2012). Exploring Language Anxiety Regarding Speaking Skill in Iranian EFL Learners in an Academic Site in Malaysia. International Journal of Applied Linguistics & English Literature. 1. 153-162. 10.7575/ijalel.v.1n.2p.153. 
Zhang, X. (2025). Systematic review and meta-analysis of the relationship between foreign language anxiety and academic achievement in Chinese language learners. Frontiers in Education, 10. https://doi.org/10.3389/feduc.2025.1576224